Multivariable Spectral Multipliers and Analysis of Quasielliptic Operators on Fractals

نویسنده

  • ADAM SIKORA
چکیده

We study multivariable spectral multipliers F (L1, L2) acting on Cartesian product of ambient spaces of two self-adjoint operators L1 and L2. We prove that if F satisfies Hörmander type differentiability condition then the operator F (L1, L2) is of Calderón-Zygmund type. We apply obtained results to the analysis of quasielliptic operators acting on product of some fractal spaces. The existence and surprising properties of quasielliptic operators have been recently observed in works of Bockelman, Drenning and Strichartz. This paper demonstrates that Riesz type operators corresponding to quasielliptic operators are continuous on L spaces. This solves the problem posed in [4, (1.3) p. 1363]. I dedicate this paper to the memory of my teachers Andrzej Hulanicki and Tadeusz Pytlik.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some algebraic properties of Lambert Multipliers on $L^2$ spaces

In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.

متن کامل

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

Harmonic Calculus on Fractals { a Measure Geometric Approach Ii

Riesz potentials and Laplacian of fractal measures in metric spaces are introduced. They deene self{adjoint operators in the Hilbert space L 2 () and the former are shown to be compact. In the euclidean case the corresponding spectral asymptotics are derived by Besov space methods. The inverses of the Riesz potentials are fractal pseudo-diierential operators. For the Laplace operator the spectr...

متن کامل

On the L2 → L∞ norms of spectral multipliers of “quasi- homogeneous” operators on homogeneous groups

We study the L2 → L∞ norms of spectral projections and spectral multipliers of left-invariant elliptic and subelliptic second-order differential operators on homogeneous Lie groups. We obtain a precise description of the L2 → L∞ norms of spectral multipliers for some class of operators which we call quasi-homogeneous. As an application we prove a stronger version of Alexopoulos’ spectral multip...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008